Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Viruses ; 15(2)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216966

ABSTRACT

The type-I interferon (IFN) system represents the first line of defense against viral pathogens. Recognition of the virus initiates complex signaling pathways that result in the transcriptional induction of IFNs, which are then secreted. Secreted IFNs stimulate nearby cells and result in the production of numerous proinflammatory cytokines and antiviral factors. Of particular note, IFN-induced tetratricopeptide repeat (IFIT) proteins have been thoroughly studied because of their antiviral activity against different viral pathogens. Although classically studied as an antiviral protein, IFIT expression has recently been investigated in the context of nonviral pathologies, such as cancer and sepsis. In oral squamous cell carcinoma (OSCC), IFIT1 and IFIT3 promote metastasis, while IFIT2 exhibits the opposite effect. The role of IFIT proteins during bacterial/fungal sepsis is still under investigation, with studies showing conflicting roles for IFIT2 in disease severity. In the setting of viral sepsis, IFIT proteins play a key role in clearing viral infection. As a result, many viral pathogens, such as SARS-CoV-2, employ mechanisms to inhibit the type-I IFN system and promote viral replication. In cancers that are characterized by upregulated IFIT proteins, medications that decrease IFIT expression may reduce metastasis and improve survival rates. Likewise, in cases of viral sepsis, therapeutics that increase IFIT expression may improve viral clearance and reduce the risk of septic shock. By understanding the effect of IFIT proteins in different pathologies, novel therapeutics can be developed to halt disease progression.


Subject(s)
COVID-19 , Carcinoma, Squamous Cell , Interferon Type I , Mouth Neoplasms , Sepsis , Humans , Tetratricopeptide Repeat , SARS-CoV-2 , Viremia , Antiviral Agents
2.
Biomed Pharmacother ; 138: 111437, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1101117

ABSTRACT

Hyperinflammatory response caused by infections such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) increases organ failure, intensive care unit admission, and mortality. Cytokine storm in patients with Coronavirus Disease 2019 (COVID-19) drives this pattern of poor clinical outcomes and is dependent upon the activity of the transcription factor complex nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and its downstream target gene interleukin 6 (IL6) which interacts with IL6 receptor (IL6R) and the IL6 signal transduction protein (IL6ST or gp130) to regulate intracellular inflammatory pathways. In this study, we compare transcriptomic signatures from a variety of drug-treated or genetically suppressed (i.e. knockdown) cell lines in order to identify a mechanism by which antidepressants such as fluoxetine demonstrate non-serotonergic, anti-inflammatory effects. Our results demonstrate a critical role for IL6ST and NF-kappaB Subunit 1 (NFKB1) in fluoxetine's ability to act as a potential therapy for hyperinflammatory states such as asthma, sepsis, and COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Cytokine Receptor gp130/genetics , Cytokine Release Syndrome/drug therapy , Fluoxetine/therapeutic use , NF-kappa B p50 Subunit/genetics , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Fluoxetine/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL